

MAX-PLANCK-INSTITUT FÜR PHYSIK

Dimensional Reduction in Cobordism and

K-theory [Blumenhagen, Cribiori, C.K., Makridou 220X.XXXXX]

Christian Kneißl¹ 05.07.2022 21th String Phenomenology Conference in Liverpool

¹Max-Planck-Institute for Physics

Cobordism - Definition

- $\bullet\,$ Take two compact n-dimensional manifolds M and N
- Cobordant, if there is (n+1)-dimensional manifold W, s.t. $\partial W = M \cup N$

Figure 1: Cobordism W between M and N

- In physics terms: We allow for topology-changing processes between M and N
- We denote the set of cobordism classes Ω^ξ_n with elements [M]
 ⇒ forms Abelian group under the disjoint union
 [M₁] + [M₂] = [M₁ ∪ M₂]
- ξ denotes some kind of tangential structure, which is preserved on W, M and N

The Cobordism Conjecture [McNamara, Vafa '19]

• A non-vanishing cobordism group $\Omega_n^{\boldsymbol{\xi}}$ can be understood as a global symmetry

 \Rightarrow Absence of Global Symmetries in Quantum Gravity

[Banks, Seiberg '10] implies $\Omega_n^{QG} = 0$

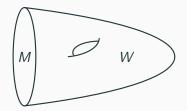


Figure 2: Vanishing cobordism group - nullbordant manifold

- Consider a simpler structure than the complete quantum gravity structure, but still expected part of a quantum gravity description (for example spin structure)
 ⇒ non-trivial cobordism groups Ω_n^{QG} ≠ 0
- Two possibilities to trivialize the global symmetry:
- Breaking: Introduce defect, such that

$$\Omega_n^{\widetilde{QG}+\text{defect}}=0$$

• Gauging: Consistency of quantum gravity compactification on manifold M:

$$[M] = 0 \in \Omega_n^{\widetilde{QG}}$$

- So far I have presented an abbreviated definition of cobordism groups, namely just $\Omega_n^{\xi}(pt) = \Omega_n^{\xi}$
- Just a special case of $\Omega_n^{\xi}(X)$ \Rightarrow set of equivalence classes [M,f] with $f : M \to X$ (M,f) cobordant to (N,g), if there exists (W,h), such that: $\Rightarrow \partial W = M \cup N$
 - \Rightarrow h becomes f or g on the respective boundary

The Cobordism groups of general manifolds

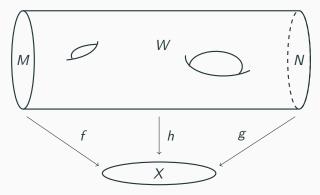


Figure 3: Cobordism (W, h) between (M, f) and (N, g).

- Consider the pair of complex (or real) vector bundles (E, F)
 ⇒ with equivalence relation (E, F) ~ (E ⊕ H, F ⊕ H)
- Can think about the pairing as subtraction, since
 (E, E) ~ (0 ⊕ E, 0 ⊕ E) ~ (0,0) = 0 matching
 (E, E) = E E = 0
- Can define addition, subtraction, the inverse of an element and the trivial element ⇒ defines group
- K-theory is of physical relevance as well
 ⇒ Classification of Dp-branes [Witten '98]

Connection between cobordism and K-theory

 for example real K-theory KO⁻ⁿ(pt) captures the D(9-n)-brane charges of type I:

n	0	1	2	3	4	5	6	7	8	9	10
$KO^{-n}(\mathrm{pt})$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
$KO^{-n}(\mathrm{pt})$	D9	$\widehat{D8}$	D7		D5				D1	$\widehat{D0}$	$\widehat{D(-1)}$

• Now, take a look at the spin cobordism groups of the point:

n	0	1	2	3	4	5	6	7	8	9	10
$\Omega_n^{ m Spin}({ m pt})$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	$2\cdot\mathbb{Z}$	$2\cdot\mathbb{Z}_2$	$3\cdot\mathbb{Z}_2$

• There is a remarkable similarity!

Connection between cobordism and K-theory

 This hints at a general structure ⇒ Atiyah-Bott-Shapiro orientation [Atiyah, Bott, Shapiro '64]:

$$\alpha: \ \Omega_n^{\rm Spin}({\rm pt}) \to \mathcal{KO}^{-n}({\rm pt})$$
(1)

$$\alpha^{c}: \quad \Omega_{n}^{\mathrm{Spin}^{c}}(\mathrm{pt}) \to \mathcal{K}^{-n}(\mathrm{pt})$$
(2)

• α and α^c are the (refined) \hat{A} -genus and Todd-genus respectively

 \Rightarrow Can be explicitly calculated for a given manifold

• Recall: To gauge a non-vanishing cobordism group:

$$[M] \stackrel{!}{=} 0 \in \Omega_n^{\xi}$$

Connection between cobordism and K-theory

- Identified to match the tadpole constraint of a wrapped brane [Blumenhagen, Cribiori '21]
- Let's gauge $\Omega_6^{\mathrm{Spin}^{\mathrm{c}}}(\mathrm{pt}) = \mathbb{Z} \oplus \mathbb{Z}$: $\Omega_6^{\mathrm{Spin}^{\mathrm{c}}}(\mathrm{pt}) \to \mathcal{K}^{-6}(\mathrm{pt})$

$$0 = \int_{M} \sum_{i \in def} Q_i \, \delta^{(6)}(\Delta_{4,i}) + \int_{M} \left(a_1^{(6)} \, \frac{c_1 \, c_2}{24} + a_2^{(6)} \, \frac{c_1^3}{2} \right) \, .$$

• For $a_1^{(6)} = -12$ and $a_2^{(6)} = -30$, this tadpole is realized in F-theory on smooth CY_4 elliptically fibered over base M[Sethi, Vafa, Witten '96]

Generalizing from the point to a compact manifold X

- Dimensional reduction on $X \Rightarrow$ Calculation of $K^{-n}(X)$ required
- The cobordism conjecture states $\Omega_n(\text{pt}) = 0$, but what about $\Omega_n(X)$?
- Is there a physical interpretation of the cobordism groups $\Omega_n(X)$?
- What happens to the map from cobordism to K-theory groups, when moving from pt to X?
- First, calculate cobordism with Spin/Spin^c structure and real/complex K-theory groups for several manifolds X of interest, e.g. X ∈ {S^k, T^k, K3, CY₃}
 ⇒ Mathematical tool: Atiyah-Hirzebruch spectral sequence

(AHSS) [Atiyah, Hirzebruch '61]

The Atiyah-Hirzebruch spectral sequence

- Applies both for generalized homology theories (like cobordism) and gen. cohomology theories (like K-theory)
- Choose X, for example CY₃, and the generalized (co-)homology theory of your interest, for example complex K-theory K(X)
- Starting point: second page $E_2^{p,q} = H^p(X, K^q(pt))$
- Goal: reach last page $E^{p,q}_{\infty}$ and sum over diagonals to get K(X)
- How to get from one page to the next?
 ⇒ differentials d_r

$$d_r: E_r^{p,q} \to E_r^{p+r,q-r+1} \qquad E_{r+1}^{p,q} \cong \frac{\ker d_r}{\operatorname{Im} d_r}$$

The Atiyah-Hirzebruch spectral sequence - Example

• Let's take a look at the AHSS for $K^{-n}(CY_3)$

6	\mathbb{Z}	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
5	0	0	0	0	0	0	0
4	\mathbb{Z}	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
3	0	0	0	0	0	0	0
2	\mathbb{Z}	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
1	0	0	0	0	0	0	0
0	\mathbb{Z}	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
-1	0	0	0	0	0	0	0
-2	\mathbb{Z}	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
-3	0	0	0	0	0	0	0
-4	Z	0	$b_2\mathbb{Z}$	$b_3\mathbb{Z}$	$b_2\mathbb{Z}$	0	\mathbb{Z}
-5	0	30	0	0 d	0	0	0
-6	\mathbb{Z}	0	$b_2\mathbb{Z}$	$\neg b_3 \mathbb{Z}$	$b_2\mathbb{Z}$	0	$ eg \mathbb{Z}$

- Differential d₃ has physical meaning!
- Enforces Freed-Witten anomaly cancellation, in our case fulfilled

 \Rightarrow Let's compare results for $\Omega^{\mathrm{Spin}^{\mathrm{c}}}_{n}(CY_{3})$ and $\mathcal{K}^{-n}(CY_{3})$

Is there still a connection between these two indicating gauging the global symmetries of Ω^{Spin^c}_n(CY₃)?
 ⇒ the answer is yes (also true for the other manifolds we have studied)

Results of Spectral Sequence

 Interestingly, both Ω^{Spin^c}_n(CY₃) and K⁻ⁿ(CY₃) can be expanded in terms of the (co-)homological data of CY₃:

$$\begin{split} \Omega_n^{\mathrm{Spin}^c}(CY_3) &= \Omega_n^{\mathrm{Spin}^c}(\mathrm{pt}) \,\oplus\, b_2 \cdot \Omega_{n-2}^{\mathrm{Spin}^c}(\mathrm{pt}) \,\oplus\, b_3 \cdot \Omega_{n-3}^{\mathrm{Spin}^c}(\mathrm{pt}) \,\oplus\, b_4 \cdot \Omega_{n-4}^{\mathrm{Spin}^c}(\mathrm{pt}) \oplus\, \Omega_{n-6}^{\mathrm{Spin}^c}(\mathrm{pt}) \\ \mathcal{K}^{-n}(CY_3) &= \mathcal{K}^{-n}(\mathrm{pt}) \,\oplus\, b_2 \cdot \mathcal{K}^{-n-2}(\mathrm{pt}) \,\oplus\, b_3 \cdot \mathcal{K}^{-n-3}(\mathrm{pt}) \,\oplus\, b_4 \cdot \mathcal{K}^{-n-4}(\mathrm{pt}) \oplus\, \mathcal{K}^{-n-6}(\mathrm{pt}) \end{split}$$

 Lattice of global symmetries on the cobordism side ⇒ as expected from dimensional reduction of the current associated to a (continuous) global symmetry

$$J_{n+m} = \sum_{a=1}^{b_m} j_n^{(m)a} \wedge \omega_{(m)a}$$

Results of Spectral Sequence

 Instead of just one tadpole condition from the ABS-map Ω_n^{Spin^c}(pt) → K⁻ⁿ(pt) ⇒ Get a tadpole from gauging each cobordism group

 \Rightarrow We can write down the following map indicating the gauging of all groups within $\Omega_n^{\rm Spin^c}(CY_3)$

$$\Omega_n^{\mathrm{Spin}^c}(CY_3) \to K_n(CY_3) = K^{-n+6}(CY_3)$$

 Gauging of each cobordism group introduces a tadpole corresponding on the K-theory side to a wrapped D-brane on a Calabi-Yau cycle

- Fixing a specific manifold X in cobordism has a nice interpretation in terms of dimensional reduction
- The map from cobordism to K-theory is still intact and has a nice interpretation in terms of wrapped D-branes
- Considering manifolds with torsion
- So far H-flux has been turned off ⇒ non-trivial H-flux studied for K-theory (twisted K-theory)

Thank You!